Exercise 11

Convert each of the following Fredholm integral equation in 9-16 to an equivalent BVP:

$$
u(x)=\cos x+\int_{0}^{1} K(x, t) u(t) d t, K(x, t)= \begin{cases}6 t(1-x), & \text { for } 0 \leq t \leq x \\ 6 x(1-t), & \text { for } x \leq t \leq 1\end{cases}
$$

Solution

Substitute the given kernel $K(x, t)$ into the integral.

$$
\begin{equation*}
u(x)=\cos x+\int_{0}^{x} 6 t(1-x) u(t) d t+\int_{x}^{1} 6 x(1-t) u(t) d t \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=-\sin x+\frac{d}{d x} \int_{0}^{x} 6 t(1-x) u(t) d t+\frac{d}{d x} \int_{x}^{1} 6 x(1-t) u(t) d t
$$

Apply the Leibnitz rule to differentiate the integrals.

$$
\begin{aligned}
& =-\sin x+\int_{0}^{x} \frac{\partial}{\partial x} 6 t(1-x) u(t) d t+\underline{6 x(1-x) u(x) \cdot 1}-6(0)(1-x) u(0) \cdot 0 \\
& \quad \quad \quad \int_{x}^{1} \frac{\partial}{\partial x} 6 x(1-t) u(t) d t+6 x(0) u(1) \cdot 0-6 x(1-x) u(x) \cdot 1 \\
& =-\sin x+\int_{0}^{x}(-6 t) u(t) d t+\int_{x}^{1} 6(1-t) u(t) d t \\
& =-\sin x-6 \int_{0}^{x} t u(t) d t-6 \int_{1}^{x}(1-t) u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x once more.

$$
\begin{aligned}
u^{\prime \prime}(x) & =-\cos x-6 \frac{d}{d x} \int_{0}^{x} t u(t) d t-6 \frac{d}{d x} \int_{1}^{x}(1-t) u(t) d t \\
& =-\cos x-6 x u(x)-6(1-x) u(x) \\
& =-\cos x-6 x u(x)-6 u(x)+\underline{6 x u}(x)
\end{aligned}
$$

The boundary conditions are found by setting $x=0$ and $x=1$ in equation (1).

$$
\begin{aligned}
& u(0)=\cos 0+\int_{0}^{0} 6 t(1) u(t) d t+\int_{0}^{1} 6(0)(1-t) u(t) d t=1 \\
& u(1)=\cos 1+\int_{0}^{1} 6 t(0) u(t) d t+\int_{1}^{1} 6(1)(1-t) u(t) d t=\cos 1
\end{aligned}
$$

Therefore, the equivalent BVP is

$$
u^{\prime \prime}+6 u=-\cos x, u(0)=1, u(1)=\cos 1 .
$$

